Bioinformatics Lunch Seminar (Summer 2014)

- Every other Friday at 1 pm. 20-30 minutes plus discussion
- Informal, ask questions anytime, start discussions
- Content will be based on feedback
- Targeted at broad audience of various levels of backgrounds and education
- Emphasis on Genomics Center

Contact:
Raymond Hovey
Genomics Center - SFS
rhovey@uwm.edu
414-382-1774
http://www.greatlakesgenomics.uwm.edu/
Proteins with similar structures often have similar functions.

Protein structure is divided into these 4 levels:
1. Primary Structure- Polypeptide backbone
2. Secondary Structure- Local Hydrogen bonds along the backbone
3. Tertiary structure- Long distance bonding involving the AA side chains
4. Quaternary structure- Protein-Protein interactions leading to formation of dimers, tetramers, etc.

Motifs and domains are combinations of secondary structures. Motifs only consist out of few secondary structures. They may but need not have a function. A domain is more complex. It is usually defined as a modular functional unit folding independently.
Chapter 4.2: Three dimensional protein structure

Primary amino acid sequence determines the 3D structure of proteins

Secondary structure elements

Major structures:
- $H = \alpha$-helix
- $E = \beta$-sheet (extended strands)

Minor structures:
- $G = 3$-helix
- $I = 5$-helix
- $T = H$-bonded turn
- $S =$ bend

Crambin (1CRN)

```
TTCCSIVARSNFRNVCRLPGTFEAIHCATYTGCIIIPGATCPOGDYAN
EE SHHHHHHMMMMMMMMMTTT HHHHHHHS EE SSS SSS
```
Quaternary structure (two or more subunits)

Tertiary structure
(folding of helices and β-sheets and loops)
Tertiary structure is formed by long distance interactions of the amino acid side chains. There are several types of bonds:
A) Ionic bonds
B) Hydrogen bonds
C) Hydrophobic interactions
D) Disulfide bonds — weak covalent bond between 2 Cysteins (R-Cys-S-S-Cys-R)
Hydrogen Bonds in Tertiary Structure
Hydrogen bonds in tertiary structure involve polar non-charged amino acid side chains:
Alcohols -- Ser Thr Tyr
Amides --- Asn Gln

Ionic bonds in Tertiary Structure
Ionic bonds formed between polar, charged AA side chains:
Negative -- Glu Asp
Positive -- Lys Arg His

Hydrophobic Interactions in Tertiary Structure
Hydrophobic interactions involve the side chains of Non-Polar amino acids:
Hydrocarbon -- Ala Val Leu Ile Pro Met
Aromatics ------ Phe Trp (Tyr)

Bonds in quaternary structure (between subunits):
Commonly found:
• Ionic Bonds
• Hydrogen Bonds
Less Commonly found:
• Hydrophobic interfaces
• Interchain Disulfides
- Protein Structure is mostly stabilized by weak, non-covalent bonds. The energy difference between the denatured and native structure of proteins is small (important—many proteins change conformation during function; but also make them easy to unfold or even denature)

- This is one reason why the prediction of a protein structure is so difficult (no very low energy status)

- There are some structures in the secondary structure that can be predicted with certain probability

- But how the entire structure looks like is unpredictable—possibilities of interaction of amino acids are infinite

- Levinthal’s paradox: a 100 aa protein has 3^{200} possible backbone configurations - many orders of magnitude beyond the capacity of the fastest computers

- Strategy —> explore the 3D structure of protein classes/domains by X-ray diffraction structure analysis and predict structure of other proteins by modeling
Because 3D structure is strongly conserved in molecular evolution, one can often make valid predictions concerning structure and function by examining the structures of related proteins.

To find a structure for a protein or related proteins, use the following procedure:

Find the protein of interest using an accession number or keyword search in Entrez’s structure database. Use blastp if the sequence is new and not in Entrez.
Cn3D is NCBI's 3D structure viewer. It allows you to interactively view 3D structures, sequences, and sequence alignments. Cn3D is available for Windows, MacOS, and Unix (until V4.1).

To visualize the 3D structure we need a helper program = Cn3D. Download it if it is not installed already.

Example:
Ferredoxin of Clostridium Pasteurianum with 2 oxidized [4Fe-4S]
(MMDB-ID 55778)
Many opportunities to change 3D view of the protein

- Zoom functions

- Animated move of the protein

- The style panel contains detailed controls for all drawing styles, colors, and labels
Highlight single amino acids (double click; one of the cysteine residues that coordinate the FeS cluster)

See amino acid in the sequence alignment viewer

Enlarge by zoom in (view menu)
If you are working with an unknown protein do the following:

Standard protein-protein BLAST [blastp]. Then select "pdb" in the "Database" menu (to search against known structures),
Live Demonstration:
You have a gene encoding a hypothetical protein that shows homologies to a certain protein family. Check this assumption by comparison the predicted 3D-structure.

Example is a gene from *Gluconobacter oxydans* that encodes a putative PQQ dependent dehydrogenase (GOX1441)
Result of BLAST (with pdb database, display may differ depending on your browser)

Distribution of 17 Blast Hits on the Query Sequence

- Mouse-over to show define and scores, click to show alignments

<table>
<thead>
<tr>
<th>Score</th>
<th>E Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hits</td>
<td>Score</td>
</tr>
<tr>
<td><40</td>
<td></td>
</tr>
<tr>
<td>40-50</td>
<td></td>
</tr>
<tr>
<td>50-80</td>
<td></td>
</tr>
<tr>
<td>80-200</td>
<td></td>
</tr>
<tr>
<td>>=200</td>
<td></td>
</tr>
</tbody>
</table>

Distance tree of results

- Related Structures

<table>
<thead>
<tr>
<th>PDB ID</th>
<th>Structure Title</th>
<th>Score</th>
<th>E Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>pdb1XE01A</td>
<td>Chain A, Crystal Structure Of Quinohemoprotein Alc...</td>
<td>103</td>
<td>3e-22</td>
</tr>
<tr>
<td>pdb1YT01A</td>
<td>Chain A, Molecular Cloning And Structural Analysis...</td>
<td>95.9</td>
<td>4e-20</td>
</tr>
<tr>
<td>pdb1XY91A</td>
<td>Chain A, Structure At 1.9 A Resolution Of A Quinoh...</td>
<td>80.8</td>
<td>9e-18</td>
</tr>
<tr>
<td>pdb1BH91A</td>
<td>Chain A, Methanol Dehydrogenase From Methylophilus...</td>
<td>77.0</td>
<td>2e-14</td>
</tr>
<tr>
<td>pdb11F91A</td>
<td>Chain A, Catalytic Mechanism Of Quinoprotein Metha...</td>
<td>77.0</td>
<td>2e-14</td>
</tr>
<tr>
<td>pdb12D91A</td>
<td>Chain A, Crystal Structure Of Methanol Dehydrogene...</td>
<td>74.3</td>
<td>1e-13</td>
</tr>
<tr>
<td>pdb13L61A</td>
<td>Chain A, Crystal Structure Of Methanol Dehydroge...</td>
<td>69.7</td>
<td>3e-12</td>
</tr>
<tr>
<td>pdb15761A</td>
<td>Chain A, Crystal Structure Of The Quinoprotein Ful...</td>
<td>67.3</td>
<td>1e-11</td>
</tr>
</tbody>
</table>
Select the one at the top with the best score and E-value-- leads to the alignment, from which the "Structure" link on the right leads ultimately to the 3d file.
This is a very powerful general method for finding structures whose proteins are related to the query closely enough so that structural properties can be inferred by homology.

In our case the sequence of the conserved hypothetical protein showed homologies the a PQQ-dependent ethanol dehydrogenase with known 3D structure from Comamonas testosterone.
Aligned domains are shown in red and blue, unaligned in gray. Colors are consistent in sequence and structure windows. Many opportunities to modify the alignment.
PQQ and active center well aligned. So our protein is a PQQ dependent dehydrogenase. It does not contain a heme group and the corresponding heme-binding domain.

Now aligned is red and unaligned purple.
Bioinformatics Lunch Seminar (Summer 2014)

- Every other Friday at 1 pm. 20-30 minutes plus discussion
- Informal, ask questions anytime, start discussions
- Content will be based on feedback
- Targeted at broad audience of various levels of backgrounds and education
- Emphasis on Genomics Center

Contact:
Raymond Hovey
Genomics Center - SFS
rhovey@uwm.edu
414-382-1774
http://www.greatlakesgenomics.uwm.edu/